Cell Cycle and Cell Division

 Assertion (A): Growth and reproduction are characteristics of cells, indeed of all living organism.

Reason (R): Cycle of growth and division allow a single cell to form a structure consisting of millions of cells.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 2. Assertion (A): Distribution of replicated chromosomes (DNA) to daughter nuclei by a complex series of events is almost accurate phenomenon.

Reason (R): Such distribution of replicated chromosomes to daughter nuclei by a complex series of events is under genetic control.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **3. Assertion (A):** Cells in quiscent stage (G₀) are metabolically inactive, so don't show cell division.

Reason (R): Quiscent stage appears on exit of cell from G_2 phase of cell cycle.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **4. Assertion (A):** In plant cells cell plate method is found for cytokinesis instead of cell furrow method.

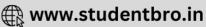
Reason (R): Plant cell are enclosed by a relatively inextensible cell wall.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

5. Assertion (A): Meiosis involves two sequential cycles of nuclear and cell division called meiosis-I & meiosis-II, but only a single cycle of DNA replication.

Reason (R): Meiosis is aimed to produce reduced cells having half number of chromosome that mother cell.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 6. Assertion (A): Meiosis-I is most significant phenomenon from evolution point of view.


 Reason (R): Meiosis-I leads to reduction in chromosome so that consistency of chromosome can be maintained.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- 7. Assertion (A): Zygotene is characterized by formation of synaptonemal complex. Reason (R): Synaptonemal complex helps in synapsis of non homologous chromosomes.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- **8. Assertion (A):** During pachytene crossing over takes place which is dependent on recombinase.

Reason (R): Recombinase is the group of enzymes involved in crossing over and crossing over in an enzyme dependent process.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

9. Assertion (A): Telophase-I leads to formation of diad of cells.

Reason (R): Telophase-I is marked by completion of karyokinesis and cytokinesis as well.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **10. Assertion (A):** During meiosis-I there is no division of chromosome.

Reason (R): During meiosis-I there is separation and movement of homologous, in order to reduce the number of chromosome half in daughter cells.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **11. Assertion (A):** In meiosis, each bivalent is composed of four chromatids.

Reason (R): Pairing of homologous chromosomes take place in meiosis.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **12. Assertion (A):** Replication of DNA not occurs during interkinesis.

Reason (R): Division of chromosomes takes place during meiosis-II.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

13. Assertion (A): Meiosis is also known as reduction division.

Reason (R): Meiosis reduces the number of chromosomes in daughter cells.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **14. Assertion (A):** Meiosis is necessary for sexual reproduction.

Reason (R): Meiosis produces genetical identical cells.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **15. Assertion (A):** Crossing over take place during pachytene stage.

Reason (R): It is a process of interchange of chromatid material between non sister chromatid of homologous chromosomes.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 16. Assertion (A): M-phase represents the phase when the actual cell division occurs. Reason (R): Interphase represents the phase between two successive M-phase.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false

17. Assertion (A): During S-phase, amount of DNA per cell doubles.

Reason (R): During S-phase, there is no increase in chromosome number.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **18.** Assertion (A): G_0 (quiscent) stage is an inactive stage.

Reason (R): In G₀ stage, cells remain metabolically active.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **19. Assertion (A):** M-phase is the most dramatic period of the cell cycle.

Reason (R): It involves a major reorganization of virtually all components of the cell.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **20. Assertion (A):** Small cells are metabolically less active.

Reason (R): K.I. of small cells is less.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

21. Assertion (A): Crossing over is the only difference between mitosis & meiosis cell divisions.

Reason (R): Mitosis and Meiosis both are important to bring genetic variations.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3)(A) is true but (R) is false
- (4) Both (A) and (R) are false
- **22. Assertion (A):** Crossing over take place during pachytenesub stage.

Reason (R): It is a process of interchange of chromatid material between chromatid of nonhomologous chromosomes

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **23. Assertion (A):** In meiosis II division is equational.

Reason (R): Homologous chromosomes are separated in anaphase II.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **24. Assertion (A):** Cell division is a very important process in all living organisms.

Reason (R): During the division of a cell, DNA replication and cell growth also take place.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

- 25. Assertion (A): The interphase of the cell cycle is also called the resting phase.
 - Reason (R): No metabolic activity takes place inside the cell during the interphase.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- 26. Assertion (A): Meiosis ensures the production of haploid phase in the life cycle of sexually reproducing organisms.
 - Reason (R): Syngamy restores the diploid condition in sexually reproducing organisms.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- 27. **Assertion (A):** Metaphase is the stage at which morphology of chromosomes is most easily studied.
 - Reason (R): At this stage, metaphase chromosome is made up of two sister chromatids, which are held together by the centromere.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false

- 28. Assertion (A): The cells that do not divide further exit G₁ phase to enter an inactive stage called quiescent stage (G_0) of the cell cycle.
 - Reason (R): Cells in Go stage no longer remain metabolically active and no longer proliferate unless called on to do so depending on the requirement of the organism.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- 29. Assertion (A): Meiosis conserves specific chromosome number of each species across generations in sexually reproducing organisms.
 - Reason (R): Meiosis, per se, results in reduction of chromosome number by half. In the light of the above statements choose the correct answer from the options given below:
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false

Directions: In the following questions, a statement of assertion is followed by a statement of reason.

Mark the correct choice as:

- (a) If both Assertion and Reason are true and Reason is the correct explanation of Assertion.
- (b) If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
- (c) If Assertion is true but Reason is false.
- (d) If both Assertion and Reason are false.
- 30. **Assertion**: Interphase is resting stage. **Reason:** The interphase cell is metabolically inactive.
- **31. Assertion :** DNA synthesis occurs in G 1 and G 2 periods of cell cycle.

Reason : During G 1 and G2 phase, the DNA content become double.

32. Assertion : Every chromosome, during metaphase has two chromatids.

Reason: Synthesis of DNA takes places in the S-phase of interphase.

33. **Assertion:** Meiosis results in production of haploid cells.

Reason: Synapsis occurs during leptotene.

34. **Assertion**: Meiosis II is known as equational or homotypic division. **Reason**: Meiosis II produces same number

of chromosome in cell.

35. Assertion : The stage between two mitotic divisions is called interkinesis.

Reason : Interkinesis is generally long lived.

36. Assertion: Diplotene is characterized by the presence of chiasmata.

Reason: Diplotene can last for months and years in oocytes of some vertebrates.

37. Assertion: Crossing over leads to recombination of genetic material on the two chromosomes.

Reason: It is the exchange of genetic material between two homologous chromosomes.

38. Assertion : Meiotic division takes place in reproductive cells.

Reason: Synapsis occurs during zygotene of meiosis.

39. Assertion: Karyokinesis occurs in Mphase.

Reason : Cell division stops in M-phase.

40. Assertion: Prophase is the first stage of mitosis which follows S and G₁ phases of interphase.

Reason: Prophase is marked by the initiation of clusters of chromosomes.

41. Assertion : Meiotic division results in the production of haploid cells.

Reason: Synapsis occurs during zygotene of meiosis.

42. Assertion: The process of pairing of the chromosomes is called synapsis.

Reason: Synapsis occurs during leptotene stage.

43. Assertion: Variations are critical for the process of evolution.

Reason: Meiosis increases the genetic variability in the population of organisms from one generation to the next.

44. Assertion: Cell growth is a continuous process in terms of cytoplasmic increase.

Reason: DNA synthesis occurs only during two specific stages in the cell cycle.

	ANSWER KEY																			
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	1	1	4	1	1	2	3	1	1	1	2	2	1	3	2	2	2	2	1	4
Que.	21	22	23	24	25	26	27	28	29											
Ans.	4	3	3	2	1	2	2	3	2											

30.	31.	32.	33.	34	35.	36.	37.	38.	39.	40.	41.	42.	43.	44.	
50.	51.	34.	٠ د	210	55.	50•	27.	50•	37.	10.	110	12.	15.	1 10	
C	d	a	С	а	А	h	а	h	d	d	a	С	h	С	

